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Anyonic behavior of quantum group gases
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Rı́o Piedras, Puerto Rico 00931-3343
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We first introduce and discuss the formalism of SUq(N) bosons and fermions and consider the simplest
Hamiltonian involving these operators. We then calculate the grand partition function for these models and
study the high temperature~low density! case of the corresponding gases forN52. We show that quantum
group gases exhibit anyonic behavior inD52 and 3 spatial dimensions. In particular, for a SUq~2! boson gas
at D52 the parameterq interpolates within a wider range of attractive and repulsive systems than the anyon
statistical parameter.@S1063-651X~97!11301-0#
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I. INTRODUCTION

In the last few years, the search for new applications
quantum groups and quantum algebras@1,2#, other than the
theory of integrable models and the quantum inverse sca
ing method, has attracted the attention of mathematicians
physicists alike. The published literature on formulatio
based on quantum group theory includes studies in nonc
mutative geometry@3,4#, quantum mechanics@5#, field
theory @6#, and molecular and nuclear physics@7#. Many of
these approaches are attempts to develop more genera
mulations of quantum mechanics and field theory, and
look for small deviations from the standard valueq51 in
nuclear and molecular physics. In this paper we study
high temperature~low density! behavior of two quantum
group gases. In Sec. II we discuss the covariant suq(N) ferm-
ion and boson algebras, and specialize to the caseN52. In
Secs. II A and II B, we introduce the SUq~2! fermion and
boson models respectively, and in each case we give a
resentation of these operators in terms of the correspon
standard fermion or boson oscillators. Section III conta
the main results of this work. We obtain the equation of st
as a virial expansion, and discuss their anyonic behavior
both gases atD52 and 3. InD52 we compare the paramete
q with the anyon statistical parametera.

II. QUANTUM GROUP BOSONS AND FERMIONS

In this section we briefly discuss the quantum group fi
algebras introduced in Ref.@8#. These algebras can be se
as generalizations of the standard bosonic and fermionic
gebras. As it is well known, bosonic and fermionic operat
satisfy the algebraic relations

f if j
†2f j

†f i5d i j ,
~1!

c ic j
†1c j

†c i5d i j ,
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which, for i , j51, . . .N, are covariant under SU(N) trans-
formations. The quantum group analogs of these equat
are given by the relations

V jV̄i5d i j6q61Rki j l V̄lVk , ~2!

V lVk56q71RjiklV jV i , ~3!

whereV5F andC, and the upper~lower! sign applies to
quantum group bosonsFi ~quantum group fermionsCi! op-
erators. TheN23N2 matrix Rjikl is explicitly written @4#

Rjikl5d jkd i l „11~q21!d i j …1~q2q21!d ikd j lu~ j2 i !,
~4!

whereu( j2 i )51 for j. i and zero otherwise. Denoting th
new fields asV i85( i51

N Ti jV j , the SUq(N) transformation
matrix T and theR matrix satisfy the well known algebrai
relations@9#

RT1T25T2T1R, ~5!

and

R12R13R235R23R13R12, ~6!

with the standard embeddingT15T^1, T251^TPV^V
and (R23) i jk ,i 8 j 8k85d i i 8Rjk, j 8k8PV^V^V.

In particular, forN52, Eqs.~2! and~3! are simply written
as follows.

~a! SUq~2!—fermions:

$C2 ,C̄2%51, ~7!

$C1 ,C̄1%512~12q22!C̄2C2 , ~8!

C1C252qC2C1 , ~9!

C̄1C252qC2C̄1 , ~10!

$C1 ,C1%505$C2 ,C2%. ~11!

~b! SUq~2!—bosons:

F2F̄22q2F̄2F251, ~12!
291 © 1997 The American Physical Society
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F1F̄12q2F̄1F1511~q221!F̄2F2 , ~13!

F2F15qF1F2 , ~14!

F2F̄15qF̄1F2 , ~15!

which for q51 become the fermion and boson algebras,
spectively. According to Eq.~5! the matrix T5~ c

a
d
b! ele-

ments generate the algebra

ab5q21ba, ac5q21ca,

bc5cd, dc5qcd,
~16!

db5qbd, da2ad5~q2q21!bc,

detqT[ad2q-1bc51,

with the unitary conditions@10# ā5d, b̄5q21c, andqPR.
Hereafter, we take 0<q,`.

A. SUq„2… fermion model

The simplest Hamiltonian one can write in terms of t
operatorsCi is simply

HF5(
k

«k~M1,k1M2,k!, ~17!

whereMik5C̄ ı,kC i ,k and$C̄k,i ,Ck8, j%50 for kÞk8. From
Eq. ~11! we see that the occupation numbers are restricte
m50 and 1, and therefore SUq(N) fermions satisfy the Paul
exclusion principle. For a givenk, a normalized state is sim
ply written

C̄2
nC̄1

mu0&, n,m50,1, ~18!

and theMi operator satisfies

@M2 ,C1#50 ~19!

and

M1C22q2C2M150. ~20!

The grand partition function is given by

ZF5Tre2(k«k~M1,k1M2,k!ebm~M1,k1M2,k!, ~21!

whereMi ,k5c i ,k
† c i ,k are the standard fermion number o

erators, and the trace is taken with respect to the states in
~18!. Since the pairC2,C̄2 satisfies standard anticommut
tion relations, we can identify it without any loss of gene
ality with a fermion pairc2 ,c2

† . In addition, from Eqs.~8!
and~11! we see that the operatorC1~C̄1! is a function of the
operatorc1(c1

†) times a function ofM2. Therefore the
grand partition functionZF becomes
-

to

q.

ZF5)
k

(
n50

1

(
m50

1

e2b«k~n1m2~12q22!mnebm~n1m! ~22!

5)
k

~112e2b~«k2m!1e2b„«k~q2211!22m…!, ~23!

which for q51 becomes the square of a single-fermion-ty
grand partition function. From Eq.~23! we see that the origi-
nal Hamiltonian becomes the interacting Hamiltonian

HF5(
k

«k„M1,k1M2,k1~q2221!M1,kM2,k…. ~24!

Therefore the parameterqÞ1 mixes the two degrees of free
dom in a nontrivial way through a quartic term in the Ham
tonian. The thermodynamics of this system will be discus
in Sec. III A.

A simple check shows that Eqs.~8!–~11! and ~24! are
consistent with the following representation ofCi operators
in terms of fermion operatorscj :

C25c2 , ~25!

C̄25c2
† , ~26!

C15c1„11~q2121!M2…, ~27!

C̄15c1
†
„11~q2121!M2…, ~28!

and, according to Eqs.~2! and~3!, this result easily general
izes for arbitraryN to

Cm5cm )
l5m11

N

„11~q2121!Ml…, ~29!

and similarly for the adjoint equation.
It is interesting to remark the distinction between SUq~2!

fermions with the so calledq-fermions bi and bi
† . The

q-fermionic algebra was introduced in@11#

bb†1qb†b5qNq, ~30!

b†b5@Nq#, ~31!

bb†5@12Nq#, ~32!

b2505b†2, ~33!

where the bracket [x]5(qx2q2x)/(q2q21) and the num-
ber operatorNqun&5nun& with n50 and 1. Since theq-num-
ber [x]5x for x50 and 1, it is obvious that the grand part
tion function for q-fermions is no different than the Ferm
grand partition function, and therefore theq-fermions do not
lead to new results as far as thermodynamics is concern

B. SUq„2… boson model

In terms of SUq~2! bosons, we introduce the following
Hamiltonian:

HB5(
k

«k~N1,k1N2,k!, ~34!



s

o
e

ad

of
-

ors

o-
ns

-

55 293ANYONIC BEHAVIOR OF QUANTUM GROUP GASES
where [F̄ i ,k ,Fk8, j ]50 for kÞk8. The operator
Ni ,k5F̄ i ,kF i ,k satisfies the relations

@N2,k ,F1#50 ~35!

and

N1,kF22q22F2N1,k50. ~36!

The states are built by the action of theF operators on the
vacuum state. For example, for a givenk a normalized state
with n1 particles of species 1 andn2 particles of species 2 is
defined by

1

A$n1%! $n2%!
F̄2
n2F̄1

n1u0&, ~37!

where the q-numbers $n%5(12q2n)/(12q2) and the
q-factorials $n%! are defined$n%!5$n%$n21%$n22%•••1.
The grand partition functionZB is written

ZB5Tre2b«k~F̄1,kF1,k1F̄2,kF2,k!e2bm~N1,k1N2,k!, ~38!

whereNi ,k are the ordinary boson number operatorsNi ,k

5f i ,k
† f i ,k and the trace is taken with respect to the state

Eq. ~37!. For a givenk the SUq~2! bosons are written in
terms of boson operatorsfi ,k andf i ,k

† with usual commuta-
tions relations@f i ,f j

†#5d i j as follows:

F25~f2
†!21$N2%, ~39!

F̄25f2
† , ~40!

F15~f1
†!21$N1%q

N2, ~41!

F̄15f1
†qN2. ~42!

The grand partition functionZB then becomes

ZB5)
k

(
n50

`

(
m50

`

e2b«k$n1m%ebm~n1m!, ~43!

with the corresponding interacting Hamiltonian

HB5(
k

«k$f1,k
† f1,k1f2,k

† f2,k%, ~44!

with the bracket$x% as defined below Eq.~37!. Therefore,
the original Hamiltonian becomes a Hamiltonian in terms
ordinary boson interactions involving powers of the numb
operatorsNi ,k and lnq. Equations~39!–~42! are easily gen-
eralized forN.2 to the set of equations

F̄m5fm
† )
l5m11

N

qNl ~45!

and

Fm5~fm
† !21$Nm% )

l5m11

N

qNl, ~46!

and a SUq(N) boson state in terms of boson operators re
in

f
r

s

1

A$n1%! $n2%! •••$nM%!
fM ,kM

†nM fM21,kM21

†nM21 •••f1,k1

†n1 u0&.

~47!

The normalization is consistent with the fact that the dual
the state in Eq.~47! is obtained by applying the adjoint op
eration defined onF. The number operatorNl5f l

†f l satis-
fies standard commutation relations with the operatorsFm ,

@Nl ,k ,F̄m,k8#5F̄m,k8dk,k8d l ,m ~48!

and

@Nl ,k ,Fm,k8#52Fm,kdk,k8d l ,m , ~49!

such that

NlF̄l
mu0&5mF̄l

mu0&. ~50!

The difference between the operatorsF and the so calledq-
bosons is obvious. A set (ai ,ai

†) of q-bosons satisfies the
relations@13,14#

aiai
†2q21ai

†ai5qN, @ai ,aj
†#505@ai ,aj #, ~51!

where Nun&5nun&. By taking two commuting sets ofq
bosons, it has been shown@11# that the operators

J15a2
†a1 , J25a1

†a2 , 2J35N22N1 ~52!

generate the quantum Lie algebra suq~2!

@J3 ,J6#56J6 , @J2 ,J2#5@2J3#. ~53!

In contrast to the algebraic relations involving the operat
Fi andF̄ j , Eq. ~51! with i , j51,2 is not covariant under the
action of the SUq~2! quantum group matrices. The therm
dynamics ofq-bosons and similar operators called quo
@12# has been studied by several authors@15,16#. In Sec. III
we study the thermodynamics of the two SUq~2! models de-
scribed in this section.

III. QUANTUM GROUP GASES

The high and low temperature behaviors of the SUq~2!
fermion model have been studied in Refs.@17, 18#, and here
we recall some results that will be compared with the SUq~2!
boson case.

A. Quantum group fermion gas

The internal energyU for this model is calculated from
the grand potentialV5~21/b!lnZF according to the equa
tion

U5S ]bV

]b
1mM D

5VE p2

2m

~21~q2211!eb„m2@~q22p2!/2m#…d3p

~2p\!3f ~«,m,q!
,

~54!
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where the functionf («,m,q)5eb(«2m)121e2b(q22«2m).
The low temperature regime of a SUq~2! fermion gas exhib-
its the interesting feature that for every value ofqÞ1 the
entropy lies below the Fermi entropy. Forq.1 andq,1 the
entropy functions are given, respectively, by the equati
@18#

S~q.1!'l
1.28A2m0k

2T

~q2211!3/2
~55!

and

S~q,1!'lk2Am0TF1.08~q311!2
~12q3!2

2~11q3!
ln23G ,

~56!

wherel5@4pV(2m)3/2/~2p\!3#. The lower bound to the en
tropy values corresponds to the limitq→0. Furthermore, sys
tems described by a Hamiltonian withq.1 share the same
entropy function with systems withq,1. Comparing Eq.
~55! with Eq. ~56!, we obtain that two gases share the e
tropy function if the following relation is satisfied:

~11q822!3/25
3.62~11q3!

2.16~11q3!22~12q3!2ln23
, ~57!

whereq8.1 andq,1. Specifically, the equality is satisfie
in the interval 0.33<q,0.91.

The high temperature behavior of this model is also int
esting. Starting with the grand partition functionZF ,

lnZF5
4pV

h3 E
0

`

p2ln~112e2b~«2m!

1e2b„«~q2211!22m…!dp, ~58!

it was shown in Ref.@18# that inD53 spatial dimensions the
virial expansion leads to the equation of state

pV5kT^M &S 11
a~q!

2 S h2

2pmkTD
3/2 ^M &

V
1••• D ,

~59!

where the coefficienta(q)5(1/23/2)2[1/2(q2211)3/2].
From Eq.~59! we see that the sign of the second virial c
efficient depends on the value ofq, showing that the param
eterq interpolates between attractive and repulsive behav
The function a/2 takes values in the interval 225/2

>a/2>2225/2~&21! asq varies from zero tò , and van-
ishes atq51.96. Figure 1 shows a graph of the functio
B(q,T)5[a(q)/2]b3/2 for large values of the temperatur
andq510, 1.96, 1, and 0.3.

It is important to remark that the free boson lim
Bb(T)52227/2b3/2,B(`,T)52225/2(&21)b3/2, and
therefore free bosons are not described in this model. A n
ral question to address is whether a similar interpolation
curs atD52. The same procedure leads to the equation
state

pA5kT^M &S 11
1

11q2
h2

8pmkT

^M &
A

1••• D , ~60!
s

-

-

r.

u-
-
f

wherein the second virial coefficient is positive for all values
of q, showing that this model, atD52, describes only repul-
sive systems.

B. Quantum group boson gas

The grand partition functionZB in Eq. ~43! can be simply
rewritten as

ZB5)
k

(
m50

`

~m11!e2b«k$m%zm, ~61!

wherez5ebm is the fugacity. InD53 the first few terms in
powers ofz read

lnZB5
4pV

h3 E
0

`

dp p2S 2e2b«kz1~6e2b«k$2%24e2b«k2!

3
z2

2
1~24e2b«k$3%236e2b«k$2%e2b«k116e2b«k3!

3
z3

3!
1••• D , ~62!

such that performing the elementary integrations gives

lnZB5
4pV

h3 SAp

2 S 2mb D 3/2z1ApS 2mb D 3/2d~q!z21••• D ,
~63!

whered(q)5 1
4„@3/~11q2!3/2#2~1/&!….

Calculating the average number of particleŝN&
5~1/b!@~] lnZB/]m!#T,V , and reverting the equation, we find,
for the fugacity,

z'
1

2 S h2

2mpkTD
3/2 ^N&

V
2d~q!S h2

2mpkTD
3S ^N&

V D 2,
~64!

leading to the following equation of state:

FIG. 1. The functionB(q,T) as defined in the text in the interval
0<b<5/eV and four values ofq.
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pV5kT^N&S 12d~q!S h2

2mpkTD
3/2 ^N&

V
1••• D . ~65!

As expected, atq51 the coefficientd~1!5227/2, which is
the numerical factor in the second virial coefficient for a fre
boson gas with two species. The free fermiond(q)5227/2

and ideal gasd(q)50 cases are reached atq'1.78 and
q'1.27, respectively.

A very similar calculation forD52 gives the equation of
state

pA5kT^N&S 12h~q!
h2

2pmkT

^N&
A

1••• D , ~66!

with h(q)5[(22q2)/4(11q2)]. At D52 this model be-
haves as a fermion gas forq5A5. Figure 2 shows a graph o
the coefficienth(q) as a function of the parameterq for
D52.

Since the SUq~2! boson gas atD52 also interpolates
completely between bosons and fermions, we can find a
lation between the parameterq and the statistical paramete
a for an anyon gas@19,20# of two species. This relation is
given by

FIG. 2. The coefficienth(q) for the interval 0<q<5. At the
valuesq51 and 51/2 the system behaves as a free boson and fer
ion gas, respectively. The second virial coefficient vanishes
q521/2.
s
ic

y

e-

a512S 52q2

2~11q2! D
1/2

, ~67!

where 0<a<1, with the boson and fermion limitsa50 ~q
51! anda51 ~q5A5), respectively. The second virial coe
ficient in Eq. ~66! takes values in the interva
@2(l T

2/2),(l T
2/4)#, with lT5Ah2/2pmkT, and therefore the

parameterq interpolates within a larger range of system
than thea parameter does.

IV. CONCLUSIONS

In this paper we studied the high temperature behavio
quantum group gases. Our approach is mainly based on
moting the su(N) covariant fermion and boson algebras
the corresponding algebraic relations covariant un
SUq(N) transformations. For purposes of simplicity we co
sidered theN52 case. Starting with the simplest Hami
tonian we calculated the partition function and obtained
equation of state for the two SUq~2! gases. Certainly, for
q51 our results become those for two species of free fe
ion or boson gases. ForqÞ1 this degeneracy is broken, an
the corresponding Hamiltonian written in terms of standa
operators acquires an interaction term. Our results indic
that theq parameter interpolates between repulsive and
tractive behaviors. In particular, for a SUq~2! fermion gas
andD53, the sign of the second virial coefficient depen
on the value ofq. The ideal gas case corresponds toq51.96
and the system becomes repulsive forq,1.96. Forq.1.96
the system becomes attractive, but asq→` the free boson
limit is not reached, and therefore this model does not in
polate completely between the free fermion and free bo
cases. ForD52 the second virial coefficient of this gas
positive for every value ofq and vanishes in theq→` limit.
For SUq~2! bosons the results are more interesting. ForD52
and 3 the parameterq interpolates completely between
wide range of attractive and repulsive systems, including
free fermion and boson cases. ForD52 we found a relation
betweenq and the statistical parametera for an anyon gas.
Therefore, the simple models studied here, and in partic
the SUq~2! boson model, offer an alternative approach
describing systems obeying fractional statistics in two a
three spatial dimensions.

-
at
@1# See, for example,Yang-Baxter Equation in Integrable System,
edited by M. Jimbo, Advanced Series in Mathematical Phys
Vol. 10 ~World Scientific, Singapore, 1990!.

@2# V. Chari and A. Pressley, A Guide to Quantum Groups~Cam-
bridge University Press, Cambridge, 1994!.

@3# S. L. Woronowicz, Publ. Res. Inst. Math. Sci.23, 117 ~1987!;
Yu I. Manin, Commun. Math. Phys.123, 163 ~1989!.

@4# J. Wess and B. Zumino, Nucl. Phys. B~Proc. Suppl.! 18, 302
~1990!.

@5# U. Carow-Watamura, M. Schlieker, and S. Watamura, Z. Ph
C 49, 439 ~1991!; M. R. Ubriaco, Mod. Phys. Lett. A8, 89
~1993!; S. Shabanov, J. Phys. A26, 2583~1993!; A. Lorek and
s

s.

J. Wess, Z. Phys. C67, 671 ~1995!.
@6# I. Aref’eva and I. Volovich, Phys. Lett. B264, 62 ~1991!; A.

Kempf, J. Math. Phys.35, 4483 ~1994!; T. Brzezinski and S.
Majid, Phys. Lett. B298, 339 ~1993!; L. Castellani, Mod.
Phys. Lett. A9, 2835~1994!; M. R. Ubriaco,ibid. A 9, 1121
~1994!; A. Sudbery, Phys. Lett. B375, 75 ~1996!.

@7# S. Iwao, Prog. Theor. Phys.83, 363 ~1990!; D. Bonatsos, E.
Argyres, and P. Raychev, J. Phys. A24, L403 ~1991!; R.
Capps, Prog. Theor. Phys.91, 835 ~1994!.

@8# M. R. Ubriaco, Mod. Phys. Lett. A8, 2213 ~1993!; 10,
2223~E! ~1995!.



,
, J

s.
A

s.
s

296 55MARCELO R. UBRIACO
@9# L. A. Takhatajan, Adv. Stud. Pure Math.19, 1 ~1989!, and
references therein.

@10# S. Vokos, B. Zumino, and J. Wess,Symmetry in Nature
~Scuola Normale Superiore Publ., Pisa, Italy, 1989!.

@11# Y. J. Ng, J. Phys. A23, 1203~1990!.
@12# O. W. Greenberg, Phys. Rev. Lett.64, 705 ~1990!; Phys. Lett.

A 209, 137 ~1995!.
@13# A. J. Macfarlane, J. Phys. A22, 4581~1989!.
@14# L. C. Biedenharn, J. Phys. A22, L873 ~1989!.
@15# M. Martı́n-Delgado, J. Phys. A24, L1285 ~1991!; Gang Su

and Mo-lin Ge, Phys. Lett. A173, 17 ~1993!; J. Tuszyn´ski, J.
Rubin, J. Meyer, and M. Kibler,ibid. 175, 173 ~1993!; I.
Lutzenko and A Zhedanov, Phys. Rev. E50, 97 ~1994!; M.
Salerno,ibid. 50, 4528~1994!; P. Angelopoulou, S Baskoutas
L. de Falco, A. Jannussis, R. Mignani, and A. Sotiropoulou
 .

Phys. A27, L605 ~1994!; S. Vokos and C. Zachos, Mod. Phy
Lett. A 9, 1 ~1994!; J. Goodison and D. Toms, Phys. Lett.
195, 38 ~1994!; 198, 471~1995!; M. R-Monteiro, I. Roditi, and
L. Rodrigues, Mod. Phys. Lett. B9, 607 ~1995!.

@16# D. Fivel, Phys. Rev. Lett.65, 3361~1990!; R. Campos, Phys.
Lett. A 184, 173 ~1994!; S. Dalton and A. Inomata,ibid. 199,
315 ~1995!; A. Inomata, Phys. Rev. A52, 932 ~1995!.

@17# M. R. Ubriaco, Phys. Lett. A219, 205 ~1996!.
@18# M. R. Ubriaco, Mod. Phys. Lett. A29, 2325~1996!.
@19# F. Wilczek, Phys. Rev. Lett.48, 1144~1982!; 49, 957 ~1982!.
@20# D. Arovas, R. Schrieffer, F. Wilczek, and A. Zee, Nucl. Phy

B 251, 117~1985!. D. Arovas, inGeometric Phases in Physic
edited by A. Shapere and F. Wilczek~World Scientific, Sin-
gapore, 1989!.


