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Anyonic behavior of quantum group gases
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We first introduce and discuss the formalism of BN) bosons and fermions and consider the simplest
Hamiltonian involving these operators. We then calculate the grand partition function for these models and
study the high temperaturgow density case of the corresponding gases for-2. We show that quantum
group gases exhibit anyonic behaviorbn=2 and 3 spatial dimensions. In particular, for a.82) boson gas
at D=2 the parameteq interpolates within a wider range of attractive and repulsive systems than the anyon
statistical parametefS1063-651X%97)11301-0

PACS numbd(s): 05.30—d

[. INTRODUCTION which, fori,j=1,...N, are covariant under SBI) trans-
formations. The quantum group analogs of these equations
In the last few years, the search for new applications ofare given by the relations
guantum groups and quantum algebfag], other than the

theory of integrable models and the quantum inverse scatter- O;0i= 8; =9 Ryij 4 Q. (2
ing method, has attracted the attention of mathematicians and -
physicists alike. The published literature on formulations 0 0=29" "Rjik 254, Q)

based on quantum group theory includes studies in noncom- . .
mutative geometry[3,4], quantum mechanicg5], field Where{Q=® and¥, and the uppetlowen sign applies to
theory[6], and molecular and nuclear physi&g. Many of quantum grouzp bozsonbi _(quantl_Jm group ferm_mn@i) op-
these approaches are attempts to develop more general f§rators: TREN"XN® matrix Ry, is explicitly written[4]
mulations of quantum mechanics and field theory, and to _ -1 P

look for smallqdeviations from the standard valqezl in Riika = 33 da(1+(Q= 1) 3) + (A= a7 6y 6~ @
nuclear and molecular physics. In this paper we study the

high temperaturglow density behavior of two quantum whered(j—i)=1 for j>i and zero otherwise. Denoting the
group gases. In Sec. Il we discuss the covariagtfsyferm-  new fields asq)/ :ZiN=1Tiij , the SY(N) transformation

ion and boson algebras, and specialize to the 8&s€. In  matrix T and theR matrix satisfy the well known algebraic
Secs. Il A and II B, we introduce the §(2) fermion and  relations[9]

boson models respectively, and in each case we give a rep-
resentation of these operators in terms of the corresponding RT,T,=T,T;R, (5)
standard fermion or boson oscillators. Section Ill contains
the main results of this work. We obtain the equation of staténd
as a virial expansion, and discuss their anyonic behavior for
both gases @ =2 and 3. InD =2 we compare the parameter

q with the anyon statistical parameter with the standard embedding,=T®1, T,=18TeVeV
and (R23)ijk,i kT 5“ /Rjk,j K’ eVeVaV.

In particular, forN=2, Egs.(2) and(3) are simply written
as follows.

In this section we briefly discuss the quantum group field (& SUq(2)—fermions:
algebras introduced in Reff8]. These algebras can be seen

R15R13R23= RaaR13R1o, (6)

II. QUANTUM GROUP BOSONS AND FERMIONS

as generalizations of the standard bosonic and fermionic al- {W2,W2}=1, @)

gebras. As it is well known, bosonic and fermionic operators — o
satisfy the algebraic relations (W, W}=1-(1-q )WV, ¥,, ®
W Wo=—q¥,¥,, €)

bid —Ppli=6, _ _
AL (1) ¥ Wo=—q¥,¥y, (10
V.,V =0={V,,V,}. 11
¢i¢,}”+¢j’f¢i:5ij, {Wq, Wy} {Wa, W5} 11
(b) SU,(2)—bosons:
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®10;— q2D; ;= 1+ (g%~ 1) 0,0, (13)
O,0,=qP; Py, (14)
<1>26171=q31<b2, (15

which for g=1 become the fermion and boson aIgebras re-

spectively. According to Eq(5) the matrix T=(2 B) ele-
ments generate the algebra
ab=q 'ba, ac=q lca,
bc=cd, dc=qcd,
(16)

db=qgbd, da—ad=(q—q Y)bc,
det,T=ad—q'bc=1,

with the unitary condition§10] a=d, b=q*c, andqeR.
Hereafter, we take 9q<c.

A. SUy(2) fermion model

The simplest Hamiltonian one can write in terms of the
operators¥; is simply

He=2 e Myt My, (17)

whereMiK=‘IT|’K\If and{\If W, j}=0for k#«’. From

K

Eqg. (11) we see that the occupation numbers are restricted to

m=0 and 1, and therefore §IN) fermions satisfy the Pauli
exclusion principle. For a giver, a normalized state is sim-
ply written

WIWT0), n,m=0,1, (18)
and theM; operator satisfies
[M2,¥,]=0 (19
and
MWV ,—q? ¥, M, =0. (20
The grand partition function is given by
=Tre Z«t Myt M2, ) @BrMy  FMa o) (2D

whereM; = wl Wi are the standard fermion number op-
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1 1
-2
:H nE E Be(n+m—(1-q~ “)mngBu(n+m) (22)
X N=0 m=0
:H (1+2e7.3(8;(7:“)+efﬁ(“:x(q72+l)*2#)), (23
K

which for q=1 becomes the square of a single-fermion-type
grand partition function. From E@23) we see that the origi-
nal Hamiltonian becomes the interacting Hamiltonian

He=2 &M 1t Mo, (g 2=1)M 1, My,).

K

(24)

Therefore the parameter~1 mixes the two degrees of free-
dom in a nontrivial way through a quartic term in the Hamil-
tonian. The thermodynamics of this system will be discussed
in Sec. Il A,

A simple check shows that Eq$3)—(11) and (24) are
consistent with the following representation ®f operators
in terms of fermion operatorg; :

Vo=, (25
W=y, (26)
V= ga(1+(q 1= 1)My), (27)
V= ylA+ (g7 -1)M)), (28)

and, according to Eq$2) and(3), this result easily general-
izes for arbitraryN to

N

Vo=t 11 @@ i-1M), (29

and similarly for the adjoint equation.
It is interesting to remark the distinction betweenq&)l

fermions with the so calledj-fermions b; and b The
g-fermionic algebra was introduced fiti1]

bb™+qgb'o=qgMs, (30

b™b=[Ng], (31)

bb'=[1-N], (32

b?=0=Db"?, (33

where the bracket{] =(q*—q *)/(q—q~!) and the num-
ber operatoNy|n)=n|n) with n=0 and 1. Since thg-num-

ber [x]=x for x=0 and 1, it is obvious that the grand parti-
tion function for g-fermions is no different than the Fermi
grand partition function, and therefore thefermions do not
lead to new results as far as thermodynamics is concerned.

erators, and the trace is taken with respect to the states in Eq.

(18). Since the painv,, V¥, satisfies standard anticommuta-
tion relations, we can identify it without any loss of gener-
ality with a fermion pairz/xz,z,b; In addition, from Eqgs(8)
and(11) we see that the operatd, (V) is a function of the
operatorz,/;l(wJ{) times a function of M,. Therefore the
grand partition functionZr becomes

B. SU,(2) boson model

In terms of SU(2) bosons, we introduce the following
Hamiltonian:

HBZE

K

SK(Nl,K+N2,K)Y (34)
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where__ [‘E,k @, ;]=0 for «#«'. The operator 1
N = ®; D,  satisfies the relations N R A [1)8
C ngdt{ng - {ny}t s P
[Ny, ®1]=0 (39 (47)
and The normalization is consistent with the fact that the dual of
the state in Eq(47) is obtained by applying the adjomt op-
-2 —
N1, P2— 0" PN, =0. (36) eration defined orb. The number operatd¥, = d>| ¢, satis-
The states are built by the action of tlheoperators on the fies standard commutation relations with the operads
vacuum state. For example, for a givera normalized state — =
with n, particles of species 1 ant, particles of species 2 is [N Prn, 1= Prn, 7 O, O1 (48)
defined by and
1 -
—q)nzq)nl|o>, (37) [N|,K'q)m,l<’]:_(Dm,K5K,K’5I,m! (49)
VngdH{nt 2 *
such that

where the g-numbers {n}=(1-g*")/(1-g°) and the o o
g-factorials {n}! are defined{n}!={n}{n—1}{n—-2}---1. N, ®["|0) =md/"|0). (50)
The grand partition functiotEg is written
— — The difference between the operatdraand the so called-
Zg=Tre FoulP1Prt PauP2le™ ANt N2 - (38)  posons is obvious. A seta(,a’) of g-bosons satisfies the

relations[13,1
where N; , are the ordinary boson number operatdfs, [ 4

= d>| «Di « and the trace is taken with respect to the states in aal—q la’a=q", [a.al]=0=[a a;] (51)
Eq. (37) For a givenk the SLJ](Z) bosons are written in ' ' !
terms of boson operatozﬁ and qS, « With usual commuta-  where N|n)=n|n). By taking two commuting sets ofj

tions relationd ¢; ,¢ 1=6 as follows: bosons, it has been shoWhi] that the operators
CI)Zz((bZ)il{NZ}' (39) \]+:a;al, J_ZaIaz, 2J3:N2_N1 (52)
D,= 3, (400 generate the quantum Lie algebra,(@y
®1=(¢]) N1}z, (4D [33.0:]=%d., [I-,3-]=[2Js]. (53
31: ¢Iq“2. (42 In contrast to the algebraic relations involving the operators
- _ ®; and®d;, Eq. (51) with i,j=1,2 is not covariant under the
The grand partition functio®g then becomes action of the S|(2) quantum group matrices. The thermo-
dynamics ofg-bosons and similar operators called quons
= —Be {n+m}oBu(n+m) [12] has been studied by several authid5s,16. In Sec. llI
Zs 1:1 n§=:O mzo € € ' (43 we study the thermodynamics of the two $2) models de-

scribed in this section.
with the corresponding interacting Hamiltonian

I1l. QUANTUM GROUP GASES

_ t i
HB_; ed P1udbrat B2xPb2u (44 The high and low temperature behaviors of the &)
fermion model have been studied in Rdfk7, 18, and here
with the bracket{x} as defined below Eq37). Therefore, we recall some results that will be compared with the, QU
the original Hamiltonian becomes a Hamiltonian in terms ofboson case.
ordinary boson interactions involving powers of the number

operatorsN; . and Irg. Equations(39)—(42) are easily gen- A. Quantum group fermion gas

eralized forN>2 to the set of equations . . i
The internal energy) for this model is calculated from

_ N the grand potential)=(—1/p)InZ¢ according to the equa-
Pr=oh II " (45 tion
I=m+1
d U (0'BQ+ M
an =Sl T u
B
N _ _ —2,2
Pp=(#7) HNe T1 o™, (40 _y [ P@rla el e T
=m+1 2m (27h)%f (e, 1,Q) !

and a S|(N) boson state in terms of boson operators reads (54
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where the functionf(s,u,q)=ef " # 42+ A %=m) 201
The low temperature regime of a @) fermion gas exhib-
its the interesting feature that for every value @f1 the

entropy lies below the Fermi entropy. Fgr-1 andq<1 the 403
entropy functions are given, respectively, by the equations )
(18] 07
B(a,T)
1.282uok?T o
>1)=~N\ = 55 ' g=1
S(q>1) ﬁq 75 1)%° (55)
and 00 tbil
’ 2 (102
S(q<1)~Mk?\uoT|1.08 03+ 1) — =——= In?3], _
2(1+9°) :
(56) -1.0 T T T T 1 5

wherex=[47V(2m)*?(27#)%]. The lower bound to the en-

tropy values corresponds to the limjit-0. Furthermore, sys- FIG. 1. The functiorB(q,T) as defined in the text in the interval
tems described by a Hamiltonian witi>1 share the same 0<pB<5/eV and four values of.

entropy function with systems witlg<<1. Comparing Eq.

(55) with Eq. (56), we obtain that two gases share the en-wherein the second virial coefficient is positive for all values

tropy function if the following relation is satisfied: of g, showing that this model, & =2, describes only repul-
sive systems.

3.621+q°)
—2y3/2_
(14977 2.161+9%°—(1-g°)%In°3’ (57) B. Quantum group boson gas

The grand partition functio®g in Eq. (43) can be simply

whereq’>1 andq<1. Specifically, the equality is satisfied rewritten as

in the interval 0.3%q<0.91.

The high temperature behavior of this model is also inter- o
esting. Starting with the grand partition functic , Ze=]] X (m+1)e Pedmizm (61)
k m=0
4

|nZ|:=

Vv ([
2 —B(e—
h3 fo pIn(1+2e~Flemw) wherez= e is the fugacity. InD=3 the first few terms in

powers ofz read

+e AE@ D -2mygp (58
amV (e —Be —Be, {2} —Be, 2
it was shown in Ref[18] that inD =3 spatial dimensions the NZ8="3 fo dp P’ 2e #orz+(Be PenlZl— e Feud)

virial expansion leads to the equation of state
2

z
a(q) h2  \32(M) X — + (24e~ Pel3l — 36e~ Fed2lePent 160 Foxd)
pV=KT(M)| 1+ v, 2
2 \2mmkT \ 5
z
®9 Xg‘*’“‘ ) (62

where the coefficienta(q)=(1/2?—[1/2(q"?+1)*3.

From Eq.(59) we see that the sign of the second virial co- g, that performing the elementary integrations gives
efficient depends on the value gf showing that the param-

eterq interpolates between attractive and repulsive behavior. 312 312
The function o/2 takes values in the interval ~22 InZEF@ (ﬁ (2_m z+\m 2_m) S(q)Z2+--- |,
=a/2=-2"%4v2—1) asq varies from zero toc, and van- h 2\ B B

ishes atq=l.953. Fis%ufre T showsI a grafphh of the function
B(q,T)=[a(q)/2 or large values of the temperature,
arggqllcg, 1(q9)6]i3 and 0.3.g P where &q) =3([3/(1+0%*?] - (1n2)).

It is important to remark that the free boson limit Calculating the average number of particlgdN)
By(T)=—2""8%2<B(»,T)=-2"3v2-1)% and =1PI(@InZs/dwl v, and reverting the equation, we find,
therefore free bosons are not described in this model. A natfor the fugacity,
ral question to address is whether a similar interpolation oc-
curs atD=2. The same procedure leads to the equation of 1/ h? )3/2<N> 5 ( h? )3(<N) 2

2mnkT| vV (a) 2makT

state =5

v ’
(64)

h? (M)

PA=KTIM)| 1+ 12 gomkT A

+eee, (60)

leading to the following equation of state:
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FIG. 2. The coefficienty(q) for the interval Gsq=<5. At the
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_1 5_q2 1/2 6
2499 (67)

where G=a<1, with the boson and fermion limita=0 (q
=1) anda=1 (q=1/5), respectively. The second virial coef-
ficient in Eqg. (66) takes values in the interval
[—(N2/2),(\ 2/4)], with \y= Vh?/2rmkT, and therefore the
parameterq interpolates within a larger range of systems
than thea parameter does.

IV. CONCLUSIONS

In this paper we studied the high temperature behavior of
quantum group gases. Our approach is mainly based on pro-
moting the sull) covariant fermion and boson algebras to
the corresponding algebraic relations covariant under

valuesq=1 and 3’2 the system behaves as a free boson and fermSUy(N) transformations. For purposes of simplicity we con-
ion gas, respectively. The second virial coefficient vanishes asidered theN=2 case. Starting with the simplest Hamil-

q= 21/2.

2 \32
h ) (N) 65

omakT) vV

pVv= kT(N)( 1- 5(q)(

As expected, afj=1 the coefficient5(1)=2"""2, which is

tonian we calculated the partition function and obtained the
equation of state for the two S(2) gases. Certainly, for
g=1 our results become those for two species of free ferm-
ion or boson gases. For#1 this degeneracy is broken, and
the corresponding Hamiltonian written in terms of standard
operators acquires an interaction term. Our results indicate

the numerical factor in the second virial coefficient for a freethat theq parameter interpolates between repulsive and at-

boson gas with two species. The free fermisj)=—2"2
and ideal gasdé(q)=0 cases are reached qt=1.78 and
g~1.27, respectively.

A very similar calculation foD =2 gives the equation of
State

h?  (N)
SamkT A )

PA=KT(N)| 1-n(q) (66)
with 7(q)=[(2—q?)/4(1+qg?)]. At D=2 this model be-
haves as a fermion gas fqe=5. Figure 2 shows a graph of
the coefficientz(q) as a function of the parameter for
D=2.

Since the SI(2) boson gas aD=2 also interpolates

tractive behaviors. In particular, for a $@) fermion gas
and D=3, the sign of the second virial coefficient depends
on the value ofy. The ideal gas case correspondg)tel.96

and the system becomes repulsive ¢r1.96. Forg>1.96

the system becomes attractive, butcggs« the free boson
limit is not reached, and therefore this model does not inter-
polate completely between the free fermion and free boson
cases. FoD =2 the second virial coefficient of this gas is
positive for every value off and vanishes in thg—c limit.

For SL{](Z) bosons the results are more interesting. Betr2

and 3 the parametey interpolates completely between a
wide range of attractive and repulsive systems, including the
free fermion and boson cases. Fd+=2 we found a relation
betweeng and the statistical parameterfor an anyon gas.

completely between bosons and fermions, we can find a reFherefore, the simple models studied here, and in particular
lation between the parametgrand the statistical parameter the SU,(2) boson model, offer an alternative approach in
« for an anyon ga$19,2Q of two species. This relation is describing systems obeying fractional statistics in two and
given by three spatial dimensions.
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